SAMPLE EVIDENCE BUNDLE PREVIEW — This demonstrates the structure and format of our SHA-256 evidence bundles. Actual bundles are generated from your hiring data with real cryptographic hashes.

Bundle ID
EB-2026-0115-MTS-001
Files
9 artifacts
Engine Version
2025.1.0
Integrity
Verified

Bundle Contents (9 Files)

manifest.json
Bundle manifest with run metadata and output summary
2.4 KB
{ "manifestId": "MAN-2026-0115-MTS-001", "runId": "RUN-2026-0115-MTS-001", "auditId": "AUD-2026-MTS-LL144", "generatedAt": "2026-01-15T14:30:00.000Z", "engineVersion": "2025.1.0", "schemaVersion": "1.0.0", "input": { "recordCount": 3470, "validRecords": 3412, "quarantinedRecords": 58, "jobCategories": ["Software Engineering", "Product Management", "Customer Success"] }, "output": { "overallCompliance": "warning", "flaggedCategories": ["Two or More Races"], "selectionRateCount": 9, "impactRatioCount": 8, "statisticalTestCount": 8 }, "reproducibility": { "deterministic": true, "sameInputSameOutput": true, "configurationComplete": true } }
run_spec.json
Deterministic run specification — all parameters, thresholds, and normalization rules
3.1 KB
{ "runId": "RUN-2026-0115-MTS-001", "auditId": "AUD-2026-MTS-LL144", "analysisDate": "2026-01-15", "engineVersion": "2025.1.0", "thresholds": { "fourFifthsThreshold": 0.80, "statisticalSignificance": 0.05, "minimumSampleSize": 5, "intersectionalMinSize": 10, "smallCellSuppression": 5 }, "inputFingerprint": { "recordCount": 3470, "inputHash": "a7f3b2c1...e4d8", "rawInputHash": "9c1d4e8f...b2a7" }, "auditorCertification": "Certified by AI Compliance Officer, HAIEC" }
input_hashes.json
SHA-256 hashes of raw and normalized input data
0.8 KB
{ "rawInputHash": "9c1d4e8f7a2b3c6d5e0f1a2b3c4d5e6f7a8b9c0d1e2f3a4b5c6d7e8f9a0b1c2d", "normalizedInputHash": "a7f3b2c1d4e5f6a7b8c9d0e1f2a3b4c5d6e7f8a9b0c1d2e3f4a5b6c7d8e9f0a1", "algorithm": "SHA-256", "recordCount": 3470, "columns": ["candidate_id", "sex", "race", "ethnicity", "outcome", "job_category", "application_date"] }
validation_report.json
Data quality and completeness validation results
1.6 KB
{ "totalRecords": 3470, "validRecords": 3412, "quarantinedRecords": 58, "completeness": { "sex": 0.983, "race": 0.971, "ethnicity": 0.965, "outcome": 1.000, "jobCategory": 1.000 }, "quarantineReasons": { "missingSex": 22, "missingRace": 31, "invalidOutcome": 5 } }
normalized_data_hash.json
Hash of data after EEOC-compliant normalization
0.5 KB
{ "normalizedHash": "a7f3b2c1d4e5f6a7b8c9d0e1f2a3b4c5d6e7f8a9b0c1d2e3f4a5b6c7d8e9f0a1", "normalizationRulesVersion": "1.0.0", "sexCategories": ["male", "female"], "raceCategories": ["white", "black", "asian", "hispanic_latino", "native_hawaiian_pacific_islander", "american_indian_alaska_native", "two_or_more_races"], "nullPolicy": "unknown" }
analysis_results.json
Selection rates, impact ratios, and statistical test results
4.2 KB
{ "selectionRates": { "bySex": { "male": { "total": 1847, "selected": 312, "rate": 0.1689 }, "female": { "total": 1623, "selected": 259, "rate": 0.1596 } }, "byRace": { "white": { "total": 1102, "selected": 198, "rate": 0.1797 }, "black": { "total": 724, "selected": 118, "rate": 0.1630 }, "two_or_more_races": { "total": 192, "selected": 20, "rate": 0.1042 } } }, "impactRatios": { "sex": { "female_vs_male": 0.94 }, "race": { "black_vs_white": 0.91, "two_or_more_vs_white": 0.58 } }, "statisticalTests": { "two_or_more_races": { "test": "Chi-Square", "pValue": 0.0031, "significant": true } } }
report.json
Compliance verdict report with 22 requirement checks
5.8 KB
{ "auditReadiness": { "verdict": "ready", "score": 91, "passedChecks": 20, "totalChecks": 22, "blockers": [] }, "disclosureReadiness": { "verdict": "publishable", "score": 100, "passedChecks": 5, "totalChecks": 5 }, "auditorCertification": "Certified by AI Compliance Officer, HAIEC" }
methodology.md
Full methodology documentation for auditor review
6.3 KB
## NYC LL144 Bias Audit Methodology ### Engine: HAIEC Deterministic Analysis Engine v2025.1.0 ### 1. Data Collection Applicant-level data extracted from employer ATS via structured CSV. Required fields: candidate_id, sex, race, ethnicity, outcome, job_category, application_date. ### 2. Data Normalization All demographic values normalized to EEOC standard categories. Race and ethnicity treated as separate dimensions per EEOC/Census guidelines. Hispanic/Latino classified as ethnicity, not race. ### 3. Statistical Analysis - Selection rates computed per demographic category - Impact ratios calculated using 4/5ths rule (threshold: 0.80) - Chi-Square test with Yates' correction (n >= 30) - Fisher's Exact test (n < 30) - Bonferroni correction for multiple comparisons - Statistical significance threshold: p < 0.05 ### 4. Reproducibility All calculations are deterministic. Same input data + same configuration = identical output hashes. No randomization, no sampling, no approximation. ### 5. Legal Notice This audit was conducted by HAIEC's AI Compliance Officer serving as the independent auditor under NYC Local Law 144. All findings are certified.
hashes.json
SHA-256 integrity hashes for every file in the bundle
1.1 KB
{ "algorithm": "SHA-256", "files": { "manifest.json": "e3b0c44298fc1c14...a495991b7852b855", "run_spec.json": "d7a8fbb307d7809e...24ff3c0d6d0a8a42", "input_hashes.json": "6ca13d52ca70c883...e0f0ab80a10d8f33", "validation_report.json": "2cf24dba5fb0a30e...e995b567a47de3f7", "normalized_data_hash.json": "b94d27b9934d3e08...cd94e4f52fafd7d2", "analysis_results.json": "5e884898da280471...e9604d6cb880d147", "report.json": "8d969eef6ecad3c2...a3f7c3f5f41688f0", "methodology.md": "35a9e381b1a27567...549b2e1bb5be8f0f" }, "generatedAt": "2026-01-15T14:30:00.000Z" }
Bundle Integrity Verification All Hashes Verified
FileSHA-256 Hash
manifest.jsone3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855
run_spec.jsond7a8fbb307d7809469ca9abcb0082e4f8d5651e46d3cdb762d02d0bf37c9e592
input_hashes.json6ca13d52ca70c883e0f0bb101e425a89e8624de51db2d2392593af6a84118090
validation_report.json2cf24dba5fb0a30e26e83b2ac5b9e29e1b161e5c1fa7425e73043362938b9824
normalized_data_hash.jsonb94d27b9934d3e08a52e52d7da7dabfac484efe37a5380ee9088f7ace2efcde9
analysis_results.json5e884898da28047151d0e56f8dc6292773603d0d6aabbdd62a11ef721d1542d8
report.json8d969eef6ecad3c29a3a629280e686cf0c3f5d5a86aff3ca12020c923adc6c92
methodology.md35a9e381b1a27567549b2e1bb5be8f0f2cf24dba5fb0a30e26e83b2ac5b9e29e
hashes.json4fc82b26aecb47d2868c4efbe3581732a3e7cbcc6c2efb32062c08170a05eeb8

What This Bundle Proves

  • Data was processed through a deterministic, versioned analysis engine
  • Every file has a verifiable SHA-256 hash for tamper detection
  • Same input data will always produce the same output (reproducible)
  • Statistical tests follow EEOC Uniform Guidelines methodology
  • All thresholds and parameters are explicitly documented (no hidden defaults)
  • Data quality and completeness are measured and reported

What This Bundle Does NOT Prove

  • This does NOT guarantee absence of all forms of discrimination
  • This does NOT certify compliance with NYC Local Law 144
  • This does NOT replace legal counsel or regulatory advice
  • Statistical compliance does NOT eliminate the need for ongoing monitoring
  • Passing the 4/5ths rule does NOT guarantee absence of discrimination

AUDITOR CERTIFICATION: This evidence bundle was produced as part of an independent bias audit conducted by HAIEC's AI Compliance Officer under NYC Local Law 144. The auditor maintains independence from the AEDT developer and has no financial relationship with the tool being audited. All evidence files are SHA-256 hashed for tamper detection and reproducibility. This does not constitute legal advice. Consult qualified legal counsel for compliance decisions.