Skip to main content
PyPI Packages • Python 3.8+

Python Packages forML Compliance Logging

Production-ready Python SDKs for automatic AI compliance documentation. Add 3 lines of code, get EU AI Act-ready audit trails with cryptographic verification.

1
Production Package
3 lines
Code to Add
100%
Framework Agnostic

Available Python Packages

Automatic compliance logging for ML training pipelines

haiec-isaf-logger

Instruction Stack Audit Framework - Automatic compliance logging for AI systems

v0.3.0Python 3.8+EU AI ActNIST AI RMFISO 42001

What It Does

Automatically logs your ML training pipeline to create audit-ready compliance documentation. Captures framework details, data lineage, and objective functions with cryptographic verification.

  • Multi-tenant session management (context-based isolation)
  • Full dataset hashing with memory-efficient chunking
  • SHA-256 cryptographic hash chains (tamper-evident)
  • Works with PyTorch, TensorFlow, JAX, scikit-learn

Use Cases

📋
Regulatory Compliance

Auto-generate EU AI Act, NIST AI RMF, ISO 42001 documentation

🔍
Audit Trail Creation

Complete cryptographic audit trails for model training

🏢
Multi-Tenant AI

Isolated session management for SaaS AI platforms

How to Use

train.py
# 1. Install
pip install haiec-isaf-logger

# 2. Initialize (one line)
import isaf
isaf.init()

# 3. Add decorators to your training functions
@isaf.log_data(source="customer_data", version="3.2.1")
def load_training_data():
    return pd.read_csv("data.csv")

@isaf.log_objective(
    name="binary_crossentropy",
    constraints=["fairness < 0.05"]
)
def train_model(data):
    model = create_model()
    model.fit(data)
    return model

# 4. Run training as normal
data = load_training_data()
model = train_model(data)

# 5. Export compliance report (one line)
isaf.export("compliance_report.json")

What You Get

L6
ML Framework Layer

Framework versions, CUDA, default parameters, precision

L7
Training Data Layer

Data source, version, shape, dtypes, preprocessing

L8
Objective Function Layer

Loss function, constraints, hyperparameters

Key Benefits

Cryptographic Verification

SHA-256 hash chains prove lineage integrity - tamper-evident

Multi-Tenant Safe

Thread-safe session isolation prevents data leakage

Framework Agnostic

Works with PyTorch, TensorFlow, JAX, scikit-learn

Minimal Code Changes

Add 3 lines of code, get full compliance documentation

Compliance Mappings

EU AI Act
  • • Article 10 - Data Governance
  • • Article 11 - Technical Documentation
NIST AI RMF
  • • MEASURE-2.2 - Evaluation metrics
  • • GOVERN-1.1 - AI policies
ISO 42001
  • • Section 8.4 - Control of externally provided AI
Colorado AI Act
  • • SB24-205 - Impact Assessment Documentation

Research Foundation

ISAF is based on peer-reviewed research published in academic literature

Published Whitepaper

The Instruction Stack Audit Framework (ISAF): A Technical Methodology for Tracing AI Accountability Across Nine Abstraction Layers

KC, S. (2025). Version 1.0. Zenodo. DOI: 10.5281/zenodo.18080355

Ready to Add Compliance Logging?

Install our Python packages and get audit-ready documentation in minutes.

MIT Licensed • Python 3.8+ • Open Source