Python Packages forML Compliance Logging
Production-ready Python SDKs for automatic AI compliance documentation. Add 3 lines of code, get EU AI Act-ready audit trails with cryptographic verification.
Available Python Packages
Automatic compliance logging for ML training pipelines
haiec-isaf-logger
Instruction Stack Audit Framework - Automatic compliance logging for AI systems
What It Does
Automatically logs your ML training pipeline to create audit-ready compliance documentation. Captures framework details, data lineage, and objective functions with cryptographic verification.
- Multi-tenant session management (context-based isolation)
- Full dataset hashing with memory-efficient chunking
- SHA-256 cryptographic hash chains (tamper-evident)
- Works with PyTorch, TensorFlow, JAX, scikit-learn
Use Cases
Regulatory Compliance
Auto-generate EU AI Act, NIST AI RMF, ISO 42001 documentation
Audit Trail Creation
Complete cryptographic audit trails for model training
Multi-Tenant AI
Isolated session management for SaaS AI platforms
How to Use
# 1. Install
pip install haiec-isaf-logger
# 2. Initialize (one line)
import isaf
isaf.init()
# 3. Add decorators to your training functions
@isaf.log_data(source="customer_data", version="3.2.1")
def load_training_data():
return pd.read_csv("data.csv")
@isaf.log_objective(
name="binary_crossentropy",
constraints=["fairness < 0.05"]
)
def train_model(data):
model = create_model()
model.fit(data)
return model
# 4. Run training as normal
data = load_training_data()
model = train_model(data)
# 5. Export compliance report (one line)
isaf.export("compliance_report.json")What You Get
ML Framework Layer
Framework versions, CUDA, default parameters, precision
Training Data Layer
Data source, version, shape, dtypes, preprocessing
Objective Function Layer
Loss function, constraints, hyperparameters
Key Benefits
Cryptographic Verification
SHA-256 hash chains prove lineage integrity - tamper-evident
Multi-Tenant Safe
Thread-safe session isolation prevents data leakage
Framework Agnostic
Works with PyTorch, TensorFlow, JAX, scikit-learn
Minimal Code Changes
Add 3 lines of code, get full compliance documentation
Compliance Mappings
EU AI Act
- • Article 10 - Data Governance
- • Article 11 - Technical Documentation
NIST AI RMF
- • MEASURE-2.2 - Evaluation metrics
- • GOVERN-1.1 - AI policies
ISO 42001
- • Section 8.4 - Control of externally provided AI
Colorado AI Act
- • SB24-205 - Impact Assessment Documentation
Research Foundation
ISAF is based on peer-reviewed research published in academic literature
Published Whitepaper
The Instruction Stack Audit Framework (ISAF): A Technical Methodology for Tracing AI Accountability Across Nine Abstraction Layers
KC, S. (2025). Version 1.0. Zenodo. DOI: 10.5281/zenodo.18080355
Ready to Add Compliance Logging?
Install our Python packages and get audit-ready documentation in minutes.
MIT Licensed • Python 3.8+ • Open Source